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Final Technical Report 

SOLID STATE IMAGE SENSOR RESEARCH, 

By W.E. Davern, R.E. Glusick, C.W. Kim, 
M. E. Seymour and R. D. Stewart 

General Electric Company 
Syracuse, New York 

ABSTRACT 

50-element linear a r rays  of InAs photodiodes have been developed for 
radiation sensing in the 1- 3 micron wavelength region. Monolithic fabrication 
techniques and controlled surface treatment have reduced leakage currents to 
5 X amps/cm2. Device design, fabrication techniques, and optical and 
e le c t r ical measurements are described. 

In addition, PbSnTe detectors were evaluated for application to 8-14 
micron radiation sensing. This ternary compound offers a potentially higher 
operating temperature than doped Ge and a greater compositional uniformity 
than HgCdTe. 

Read-out of the signal requires that high-sensitivity preaniplif i e rs  be 
used. 
optimum system performance. A 50-channel amplifier-multiplexer w a s  built. 

Direct amplifications and charge-storage modes were evaluated for 
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I. INTRODUCTION AND SUMMARY 

The continuing development of meteorological satellite systems has placed 
heavy demands upon infrared sensor technology in  te rms  of higher sensitivity, 
greater uniformity, higher operating temperature, and lower cost. These 
goals, coupled with the further requirement for a r ray  operation of the IR sen- 
sors, were the concern of the program "Solid State Image Sensor Research. '' 
This program, sponsored by NASA Electronics Research Center under contract 
NAS12-131, was carried out by the Electronics Laboratory of the General Elec- 
t r ic  Company, Syracuse, New York, and the Missile and Space Division of the 
General Electric Company, Philadelphia, Pennsylvania. 

The program has consisted of three phases: a study program that evalu- 
ated detectors and their application to meteorological satellite systems over 
the 0 . 4  - 15 - micron band; a device and system development program during 
which an array of InAs detectors was  first fabricated and placed in an elec- 
tronically scanned readout system; and the present program that optimized the 
InAs detector a r ray  and the scanning circuits. In addition, one of the tasks of 
the secorid and third phases of the program w a s  the study and evaluation of 
PbSnTe as a long-wavelength detector material. 

The results of the Phase I study which led to the selection of the I d s  array 
program a r e  summarized below: 

The visible region can be characterized by its advanced stage of device 
development, a high level of effort placed in array fabrication as a result of 
similarity to integrated circuit techniques, and a rather broad interest in ap- 
plications. Several programs have been undertaken in this wavelength, although 
all are in the laboratory stage of development. The interest in the application 
is obviously high, since much of the information which is used in imaging 
systems lies in the visible. Interest is also spurred by the obvious coniniercial 
value of a solid-state image detector to the television industry. 

The 2.5 to 5 micron region does not have the advantage of the device a r ray  
fabrication techniques of the visible, although detector elements have been 
built and operated in small  arrays.  Some materials, particularly InAs and 
InSb can be grown with moderate uniformity. The amount of effort directed at 
producing an imaging system for this -wavelength is quite small, however, &nd 
much effort can be expected before usable systems are available. The appli- 
cations to meteorology appear to be some of the prime motivations for the use 
of this wavelength. Another important consideration is the ability to use 
scanning techniques quite similar to those developed or  under development for  the 
visible region. The one significant difference between the 2. 5 - 5 micron 
region acid the visible is the need for cooling. While not as severe as that re- 
quired for 10 - 12 microns, the lower-temperature operation provides a definite 
limit on the choice of devices used in the scaming. 
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The 10 - 12 micron region is the least developed of all the regions from 
the point of view of materials, detectors, sensitivity, and scanning. The 
greatest reason for pursuing this wavelength is the long list of applications for 
10 - 12 micron wavelengths. Whereas the other wavelengths require device 
or array work, basic material  work is required for 10 - 12 microns. Cooling 
is also a rather severe limitation in that only active cooling apparatus wi l l  
provide the 77'K or  lower temperatures required. The high interest in the 
meteorological applications, plus the new uses of 10.6 micron laser radiation 
detectors,have intensified the material and device work necessary to implement 
image sensors at this wavelength. 

Details of the materials and detectors evaluated during the study phase of 
this contract appear in the "Phase I Technical Report, Solid-state Image Sen- 
sor Research, " December 1966. The scanned InAs detector a r ray  is described 
in the "Phase I1 Technical Report, Solid-state Image Sensor Research, " March 
1968. 

A. PROGRAM SUMMARY 

InAs photovoltaic detectors a r e  capable of providing background-limited 
detection for the 1 - 3 p spectral region, while being cooled to only -8OOC. 
This capability, coupled with the ability to process monolithic a r rays  of de- 
tectors, provided the impetus to carry out the device optimization work of this 
contract. Uniformity and sensitivity were the primary goals. 

Results demonstrate that the complex InAs material can be controlled to 
yield the desired device characteristics. A most important measure of this 
material control is the leakage current of the diode. State-of-the-art devices, 
prior to this present contract phase, exhibited leakage currents in the order of 

- amperes. Newly developed ar ray  devices now exhibit leakage cur- 
rent in the range of - amps. Fifty element a r rays  of such devices 
were fabricated and found to vary in responsivity by less  than rt50 % . 

It is now believed that the I d s  ar ray  fabrication technology has been 
demonstrated such that the material may be reasonably considered for nianu- 
facturing methods programs which will provide the source of supply for space 
applications. Operated at 100°K,the 0.005 X 0.007 inch detectors exhibit the 
following par m e t e r s  : 

- 3.1 microns m a x -  
7 Responsivity@ X max = 10 volts/watt 

Scanning circuits assembled during the second phase of the contract were 
designed to operate with the relatively low impedance devices then available. 
During this present phase of the program, high input impedence modifications 
were made to the circuitry, in order to maintain proper impedance matching 
with the detectors. In addition, completely new pre-amplifier circuits com- 
patible with hybrid integrated assembly techniques were breadboarded and 
tested. 
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The most promising aspect of the improved devices is the capability of 
greatly reducing the complexity of the associated electronics. Direct charge- 
storage operation of the a r rays  was described during the study phase of the 
program, as the most desirable mode of operation. Its implementation, how - 
ever, requires the use of high-impedance detectors, which were not available 
until the present effort. The primary advantage of the charge-storage mode is 
the capability of directly interrogatingeach detector in the a r ray  without the use 
of preamplifiers. 
of several hundred amplifiers per system. 

For the eventual systems desired, this signifies a saving 

Another very significant implication of the low-leakage diode is the poten- 
tial for fabricating a two-dimensional detector array using electron beam read- 
out, similar to the diode target vidicon tubes now being developed for visible 
use. Diode leakages of less  than 5 X 10-8 anips/cni2 a re  required, and were 
achieved, with silicon diode arrays, in  order to generate T. V. format iiiiages. 
The leaka e current density achieved with the diodes in the InAs array is 
4.5 x 1 -famps/cni2 at -13 volts and 100°K. 

B. SOLID-STATE IMAGE SENSOR APPLICATIONS 

As an example of a system utilizing a r rays  of the type being developed, 
consider an earth satellite with f/5 optics of 12-inch aperture. 

For the three IR wavelength bands, 1.55 - 1.75, 2 . 2  - 2 . 4  and 10.5 - 12.5 
microns, infrared detectors such a s  InAs and PbSnTe can be used to provide 
data a t  surface resolutions of 100 - 500 feet and thermal resolution of less  
than loK. Photon levels from targets appear to be high enough compared with 
fluctuations in background levels, even when contrast is reduced by atmos- 
pheric scattering, that surface resolution should not suffer. 

1. InAs 

In the 1.55 - 1.75 and 2 . 2  - 2 .4  micron bands InAs detectors can be 
used. InAs elements have been made a s  small a s  0.005 inch and 0.002 inch 
appears feasible. 

A signal to noise expression suitable for understanding the interrelationship 
of critical system parameters can be simply derived a s  follows: 

(1) 
Vs/Vn = IGI/(NEPD) = K Q  2 N toAo/(NEP) 

= T K D  to D* ON/4 FlJhf (2 1 

where Vs/Vn is the peak signal to r m s  noise voltage ratio, H is the scene 
irradiance (w/cm2) at  the aperture, NEPD is the system noise limited noise- 
equivalent power density (w/cm2). 

K is the electronic degradation factor, which for  any given pulse input is a 
function of the detector/noise filter combination, here = 0.5. 
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Q is angular resolution (radians) 
N is scene radiance (w/cm2 - sr) 
to is optical transmittance, here = 0.5 

NEP is noise equivalent power (watts) - F D 8 4  A f/D* 
D is optical aperture - 30 cm for E T  
D* is normalized detectivity (cm Hz2w-l) 
F is f/number = f/5 for typical design 
and A f  is the electronic bandwidth (Hz) which is inversely pro- 
portional to dwell time. 

A, is optics collecting a rea  (cm 2 ) 

tD A f  = 1 / 2 n  

In order to achieve 100 foot nadir surface resolution from 500 nm altitude, 
t3 must be 0.033 mr .  In a 12-inch aperture f/5 system the detector element 
must be 0.005 cm on a side. 

The D* values for InAs a re  about 1 ( l o l l )  for 200°K and 7(1011) for 770K at  
2 .3  microns and about 0 .8  of these values at 1.65 microns. A temperature of 
200°K is achievable with passive radiative cooling only. The value of (Vs/Vn) 
calculated from (2) for a typical minimum radiance in the 1. 55 - 1. 75 micron 
band of 8 
micron band, the value is 4.75. 

w/cm2-sr is 6.1. For 5(10-5)w/cni2-sr i n  the 2 . 2  - 2.4  

This assumes a bandwidth of 1.6 KHz and dwelltime of second which 
corresponds to a system with 100 % efficient scan of 128 elements in a direction 
transverse to that of satellite motion. 

td = (n/m) (s/vS) = (128/6080) [ 100/3.47 (6080)l 

where n is number of detector elements 
m is number of resolution elements across  swath width of 100 nm 
s is surface resolution 
Vs is satellite suborbit velocity 

Frame time for this scan is 12.8 msec. 

For overlap with less  efficient scan, n would increase. Scanning more 
rapidly would permit n to decrease, but would degrade sensitivity. The most 
sensitive system would have a pushbroom array of 6080 elements covering the 
entire swath width, maximizing the dwell time at  (s/Vs) f o r  n = m, at  4. 74 
msec, and increasing S/N by about 7 times over the system with 128 elements. 
Scanning a single detector element across  the 6080 resolution elements does 
not appear feasible since this calls for dwell time of less than a microsecmd. 

The number of photons incident on a detector element during one exposure 
or dwell time is Q = 8.3 (1018) N e2 Aototd a t  I. 65 microns 

= 11.6 (1918) N e2 Aototd at  2 .3  microns 

Target radiance at 300 solar altitude and 1.55 - 1.7 microns is 1.29 
w/ma-sr and at 30° and 2.2 - 2.4 microns is 0.658 w/m’- sr when modified 
by atmospheric scattering. This would provide 4.2 (104) photons and 3.0 (lo4) 
photons in these bands. These can be compared with fluctuations in back- 
ground levels %+ of 158 photons and 156 photons in these bands. 
ratios Qt/f&$ a re  over 200, resolution should not be degraded. 

Since the 
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2. PbSnTe 

In the 10.5 - 12.5 micro band PbSnTe is suggested a s  detector 
material because of its sensitivity E t temperatures as high a s  WOK, vs the 
3OoK needed for doped germanium detectors. A D* of 5(109) is believed pos- 
sible. 

Higher values of D* a r e  achievable with photoconductive Ge:Hg, for  exam- 
ple, with opticg cooled to reduce the background photon flux Qb: D* = 
A p/2hc (v/Qb)Z 

where X is wavelength of peak response = 14 microns P 
7 = quantum efficiency factor = 0. 16 

If Qb can be reduced below 1015 photons/cm2-sec, D* of 5(1011) can be 
attained. 

The sensitivity of a 10-micron infrared system is generally measured in 
terms of thermal resolution AT 

A T  = N E P / a T  3 p B  2 2  D to 

4 where (Y = Stefan-Boltzmann constant = 5.67 (10-l2) w/cm2 deg 

T = ambient temperature of surface = 2850K 

p = fraction of surface radiation in  spectral band = 0.125 
and other terms a r e  a s  defined ear l ier .  

A t  ioqg wavelengths, 100 foot resolution is not possible with 12-inch optics at 
500 nm altitude. Considering the diffraction disk diameter limit of 0. 1 mil- 
liradian, a 5OO-foot resolution (0. 164 mr )  is suggested, At f/2 this means 0 .01  
cm detector elements. 

As for  short wavelengths, maximum sensitivity is possible for a push- 
broom ar ray  of 1216 elements ( AT = 0.064OK). However. with only 12 
elements (100 %I efficient scan) 
sensitivity. 
is significantly longer than detector response time. 

T = 0.64OK, which should provide acceptable 
Frame time is then 0.29 see and dwell time is 0.237 msec,which 

The number of hotons incident on a detector element during one dwell 
time is Q = 58 (10 18 ) NO 2 &totd at  11.5 microns. 

Target radiance a s  modified by the atmosphere is 11.66 w/rna-sr vs 11.02 
w/m2-sr for background differing by 5OK. Target photons per dwell time then 
number about 1.56 (lo?) and fluctuation in background photons about 1.21 (lo4) 
providing ara t io  
Note that even for smaller AT such as log, this ratio does not change signifi- 

of over lo4. Resolution here should not be degraded. 

cantly. 
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3.  Summary 

128 

100 

12.8 

6 .1  

Characteristics of infrared scanning sensors in a 12-inch aperture 
system with 0. 5 optical efficiency operating at 500 nm altitude a re  sum-  
marized in Table I. 

128 

100 

12. 8 

4.75 

TABLE I. SUMMARY OF SENSOR CNARACTERISTICS 

Spectral Range A h  (1) 

Optical Relative Aperture 

Nadir Surface Resolution S (f t )  
Angular Resolution 6 (mr) 
Detector Type 

Detector Size (cm) 

Detectivity D* (cm H2"w-l) 

Operating Temperature 

Number of Elements (100 % eff. scan) 

Dwell Time (microseconds) 

Frame Time (milliseconds) 

Scene Signal/System noise a t  30' 

1 

solar altitude 

Thermal Resolution 

1.55 - 1.75 

f /  5 

100 
0.033 
InAs 

0.005 

8 (lolo) 

200'K 

2.2 - 2.4 

f /  5 

100 
0.033 
InAs 

0.005 

1 ( l o l l )  

200°K 

10.5 - 12.!  

f /2  

500 
0.164 
PbSnTe 

0.01 

5(109) 

7 7'K 

12 

237 

290 

--- 

0.64'K 
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11. InAs PHOTODETECTOR DEVELOPMENT 

A. THEORETICAL CONSIDERATION O F  PHOTODETECTORS 

1. Introduction 

The principle of operation of the p-n junction diode a s  a photode- 
tector is quite simple. When the incident photons whose energy is greater than 
the bandgap of the semiconductor are absorbed on a p-n junction diode, elec- 
tron-hole pairs  a r e  generated in the junction. The minority ca r r i e r s  gener- 
ated within a diffusion length will  diffuse toward the junction where they come 
under the influence of the built-in electric field and a r e  separated. This sep- 
aration produces a measurable electrical signal between the p and n regions. 
If the p and n contacts a r e  shorted, a short-circuit current can be measured; 
if the p and n contact leads a r e  opened, an open-circuit voltage wil l  appear at 
the output. This output voltage is called a photovoltage, and this type of oper- 
ation of p-n junction diode is called the photovoltaic mode of operation. 

A p-n junction diode can also be used a s  a photodetector with a reverse- 
bias voltage to the diode. A diode used in this way is known a s  a photodiode. 
When a p-n junction photodiode is biased in the reverse  direction, i t  exhibits 
a very high resistance and small  constant saturation current; the device oper- 
ates a s  a photoconductor. 
current carried by one type of minority ca r r i e r  is proportional to the density 
of this carr ier ,  so that, i f  the minority ca r r i e r  density is increased by light, 
the saturation current will  also be increased. 
be proportional to the incident light intensity. 

From the junction theory, the reverse  saturation 

Thus, the current increase wil l  

The photovoltaic detector has the advantage that no external voltage supply 
is required. The photovoltage comes about from the reduction of the potential 
bar r ie r  at the junction by the photo-generated car r ie rs .  Therefore, the photo- 
voltaic detector can be regarded a s  a transducer which converts radiant energy 
into an electrical potential. However, the output photovoltage is not directly 
proportional to the intensity of the incident light over a large range of light in- 
tensity. Only for low illumination levels will  linear operation be possible, as 
seen la ter  in the experimental results. 

1 It has been shown in a previous report that in order  for the photovoltaic 
diode to be operated in the linear region, the intensity level must be low 
enough so that the open-circuit voltage of the diode is much less  than kT/q. 
When the intensity of the incident radiation is high, the generated voltage will 
rise slowly until it removes the barr ier  of the junction, when no further in- 
crease can be expected. The maximum photovoltage which can be generated 
for  each photovoltaic p-n junction diode is thus equal to that obtained from the 
difference in the Fermi levels of the p-type and n-type material  a t  the junction. 

Phase II Report. Solid State Image Sensor Research (NAS 12-131). 
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The experimental results will  show this later in this report. 

The major application of the photodetectors, particularly in  the infrared 
region, is i n  the low radiation level and therefore,the sensitivity of the detector 
is very important. The sensitivity is usually limited by the device noise and is, 
in  fact,expressed in terms of the noise-equivalent power of the detector. The 
primary sources of noise a r e  (1) Johnson noise, (2) shot noise, and (3) back- 
ground noise. The background noise, in general, is smaller than either the 
Johnson o r  shot noise. 

The sensitivity of a reverse-biased photodiode is limited by the shot and 
Johnson noise, which a r e  a result of the reverse saturation current and the 
load resistance in the biasing circuit, respectively; whereas the sensitivity of 
a photovoltaic diode is limited only by the Johnson noise which results from 
the dynamic resistance of the diode at  the zero basis. 

A theoretical analysis of the photovoltaic InAs photodetector is presented, 
in some detail, in Section II. A. 2., following. The results a r e  given in graph- 
ical form, by means of a computer. The analysis was prompted by the need 
for practical design criteria for obtaining optimum junction depth with given 
material and device parameters. 

2. Theoretical Analysis of a Photovoltaic Diode 

The sensitivity of the photovoltaic signal depends on the many device 
parameters and on charge transport mechanisms. If the charge ca r r i e r s  a r e  
generated in a nondepletion region, they a r e  transported by diffusion to the 
depletion region of the diode. 
takes place due to a finite minority car r ie r  lifetime. Only those charges dif- 
fused to the junction contribute to the signal. Therefore, the sensitivity depends 
upon this ability of the minority ca r r i e r s  to diffuse to the junction. The dif- 
fusion ability of the ca r r i e r s  is described by the diffusion length, which is de- 
termined by the mobility and lifetime. A longer diffusion length means less  
recombination of the carr iers ,  leading to a higher sensitivity. 

During the process, car r ie r  recombination also 

The sensitivity also depends on the surface recombination velocity, since 
the ca r r i e r s  generated near the surface readily recombine at  the surface. 
This effect is increased when the incident radiation has a high absorption co- 
efficient. Thus, to increase the sensitivity it is necessary to decrease the 
surface recombination velocity. 

Therefore, the sensitivity is a function of the car r ie r  diffusion length, thg 
junction depth, the surface recombination velocity, and the absorption constant 
of the material a t  the incident radiation wavelength. An analytical expression 
of the output signal voltage of a photovoltaic photodetector was derived in the 
Phase II report and the result is given as: 
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where 

ff 

S 
N 

PoNo 

LeLh 
DeDh 
P =  

Xt 

g X 

x =  0 

is the absorption coefficient 

is the surface recombination velocity 
is the number of photons/cm 2 sec . 

are the equilibrium carr ier  densities 
are the minority car r ie r  diffusion lengths 

a r e  the minority carr ier  diffusion control 

q/kT 
is the sample thickness 

is the junction depth 

To compute the above equation, the following data for InAs were used: 

Operating temperature, T = 200°K 

Wavelength, X = 3 . 3 p  

Absorption coefficient, cy 

Electron mobility, pe 

Junction area, A 

= 2 x lo3 crn-l 

= 14,000 cm2/volt-sec 

= I .  94 x 10-4 cm2 

po = 1010 cm-3 

= 1011 cm- 3 
"0 

e 
h 

7 

7 
= 10 - 

xt- xj >> Lh 

xt = 3 x 10-2 cm 

a. Responsivity 

With the above assumed values, the photovoltaic responsivity defined 
as the signal voltage per unit optical power (volts/watt) has been computed for 
the different values of lifetime ( Te) and surface recombination velocity(s) as a 
function of the junction depth (xj). 
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The analysis is used to find an optimum junction depth when the material 
and device parameters a r e  given. Since some of the parameters such a s  the 
lifetime and surface recombination velocity a r e  not certain, different sets of 
values were used to determine the optimum junction depths. With these 
optimum junction depths, the effect of device performance on the device para- 
meters  is studied, and the results are qualitatively compared with the experi- 
mental results. 

10-5 490 26 1 . 6  x lo5 

The results of the responsivity calculations a r e  shown in Figures 1 and 2. 
These figures show the responsivity versus the junction depth, Xj, with the 
lifetime, T e ,  a s  a running parameter for given values of surface recombina- 
tion velocity, S. 
figure, respectively. It is evident that a low value of lifetime seriously affects 
the shape of the curves a t  large values of x* and the optimum junction depths 
a r e  decreased with the lifetimes. This is b e  to the inability of the car r ie rs  
to diffuse to the deep junctions for the low lifetime. But for  high lifetime, the 
curves become plateaus after reaching the peaks. These results a r e  sum- 
marized in Table 11. 

The values of S a r e  lo3 cm/sec and lo5 cm/sec for each 

TABLE II. SUMMARY OF RESPONSIVITY CALCULATION RESULTS 
Peak Responsivity 

(volt s /w at t 1 

10-5 490 23. 5 2 .38  x 1C6 

s(cm/s> re(sec)  Le(p)  xjo(P) 

103 
10-6 155 18 

10-7 49 12 

7 . 8  X lo5 

2 . 1 3  x 105 

I 10-8 15. 5 8 4 . 6 7  x lo4 

105 
10-6 155 20 

10-7 49 14 

1 . 3  x 105 

1 . 3  x 105 

10-8 15. 5 8 3 . 2  x 104 - 

It is interesting to note that the effect of an increase in the lifetime or  dif- 
fusion length is to shift the optimum junction depth to larger values, and that- 
the effect of an increase in the surface recombination velocity is, similariy, 
to shift the optimum junction depth to larger values. Note that no appreciable 
changes result from further decreases in  the surface recombination velocity 
below lo3 cm/s. 

In Figures 1 and 2, the dashed curves represent contours of optimum 
junction depth, and the corresponding maximum responsivity versus lifetime 
for the two values of S is shown in Figure 3. 
responsivity becomes saturated at high lifetime. It is also seen that the effect 
of the surface recombination velocity is more noticeable at high lifetimes than 
at  low lifetimes. 

For high value of S, the peak 
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b. Noise of a Photovoltaic Diode 

The noise of a photovoltaic diode is the thermal noise of the dynamic 
resistance of the junction at zero bias. The dynamic resistance, R of the 
diode, defined a s  the slope of voltage current curve at  zero voltage derived in 
the Phase I1 report is given-as: 

R =  

x0 r Decosh x0 
I - 

/ \ 

The thermal noise voltage for unit bandwidth is 

The junction resistance, R, more or  less is insensitive to the junction 
depth a s  expected, and therefore the noise voltage is nearly independent of the 
junction depth. For the optimum junction depths obtained from the respon- 
sivity analysis, the noise voltages were plotted a s  a function of lifetime a s  
shown in Figure 4. The noise voltage increases with lifetime; it rises faster 
for the low value of S than for the high value of S. This is attributed to the 
fact that the diode impedance becomes larger as lifetime increases and surface 
recombination velocity decreases. This means the device impedance gets 
higher as the diode improves i ts  characteristic. These effects have been 
observed in  our experiment, as wil l  be seen later i n  this report. The diodes 
having better device characteristic always give higher noise voltages than those 
of poor characteristic. Note that the responsivity r i ses  faster than the noise 
voltage with the device improvements. 

c. Detectivity D* 

In the Phase I1 report, D* was also derived, and the result is: 

D* versus lifetime for the optimum junction depth is shown in Figure 5 
for the two values of S. For high value of S, D* increases slowly and then is 
quickly saturated, whereas for low value of S, D* r i ses  steadily up to the life- 
time of 10 psec and then appears to be saturated. The values of D* computed 
from the above equation and the assumed parameters a r e  in reasonable 
agreement with available experimental data. 
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d. Summary 

Some of the results a r e  summarized in Table 111. 

TABLE 111. SUMMARY OF DETECTIVITY CALCULATION RESULTS 

1 7 1 s(cm/s) e(sec) Res. (ohm) Noise V,(volt) D*(cni cpsz/watt) -- 
_I___-___ 

10-5 9.1 x 105 1.0 x 10-7 3 . 3  x l o l l  t- 
lo3 10-6 3.1 x 105 5. 8 x 1 . 9  x 1011 

10-7 9. o x 104 3 . 2  X 9.4 x 1010 

10-8 2 . 4  x 104 1 .6  X 3.96 x l o l o  

10- 1.1 x 105 3.4 x 6 . 6  x 1O1O 

10-6 7.8 x lo4 2.9 x 10-8 6. 3 x 1O1O 
105 

10-7 4.6 X 104 2 .3  x 10-8 5 . 1  x 1010 

10-8 1.9 x 104 1 .5  x 10-8 3.0 x 1010 i 
From these theoretical results, some general conclusions for sensitive InAs 
photovoltaic detectors can be drawn: 

For maximum responsivity o r  sensitivity, the lifetime should be 
a s  high a s  possible and the surface recombination velocity should 
be a s  small a s  possible. The lifetime is more critical than the 
surface recombination velocity to increase the sensitivity. 

For high lifetime or diffusion length, the optimum junction depth is 
not too critical as long as the peak point is reached as shown in 
Figures 1 and 2. Our experimental results, as seen later, show that 
the sensitivities of the diodes diffused for 0. 5 to 1. 5 hours respec- 
tivity, are practically the same, indicating that the junction depths do 
not affect the device performance. This may indicate that the car r ie r  
lifetime in our devices is in the range of 1 - 10 ksec,  which is not 
unreasonable to assume. 

For low diffusion length, the optimum junction depth is very 
critical and the sensitivity decreases very rapidly with the 
junction depth. This effect has not been observed in our exper- 
iments, however. 

The effects of the surface recombination velocity on the device 
performance are more noticeable at  high lifetime than at low 
lifetime. It appears that the value of S of 103 cm/sec is 
likely to be encountered in our InAs devices. 
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5)  The noise voltage of the photovoltaic diode increases as  the 
diode improves its characteristic, due to the higher diode 
dynamic impedance. However, the sensitivity increases faster 
than the noise, and thus the detectivity D* is always higher for  
sensitive detectors. Our experimental results show this effect; 
the sensitive detectors always give higher noise voltage than 
poor detectors. 

Note that the above analysis has been based on one wavelength and absorp- 
tion coefficient; thus, the results should be changed for different wavelength 
and absorption coefficient. However, the wavelength used here, 3. 3 IJ -  is the 
typical peak response for the operating temperature of 200°K for an InAs photo- 
voltaic detector. 
is needed to design optimum detectors for different applications. 

Further analysis for different wavelength and temperature 

It should be noted that p o  and no are inversely proportional to the sensi- 
tivity. However, in our experiment, reducing no by doping higher car r ie r  con- 
centration in the p-region gives less sensitivity than the lightly doped detectors. 
This may be due to the fact that higher doping concentration in the p-region 
tends to degrade the car r ie r  lifetime, and as a result, the effect is to decrease 
the lifetime more than to increase the minority car r ie r  density, n . 
why Cd-diffused InAs detectors are far more sensitivie than Zn-difyused diodes. 

This is 

The following sections wil l  discuss the development of InAs photovoltaic 
detectors, fabrication of InAs detector arrays, and the measurements of these 
devices. The theoretical results agree qualitatively with the results of the 
experiments. 

B. DEVELOPMENT OF InAs P-N JUNCTION PHOTODETECTORS 

1. Introduction 

Most of the development in 111-V compound semiconductors, as in- 
frared photodetectors, has been devoted to InSb, and considerable progress 
in the device technology has been made. The studies of InAs have not been a s  
extensive as InSb. This may be partly due to the fact that the purification of 
InAs is more difficult than InSb. Thus, InAs photodetectors have received 
relatively less  attention, and the basic device technology has not yet been 
fully exploited; as a result, information for InAs device processing is not 
readily available in the literature. 

Unlike InSb, reaction of the elements to form the compound is not 
a simple matter. Because of the high volatility of arsenic, it is quite difficult 
to fabricate InAs devices at high temperature, as the arsenic is easily lost 
from the surface. The lack of arsenic in the InAs crystal wil l  result in a non- 
stoichiometry which will destroy the crystal properties. Thus, the de- 
vice processing is extremely critical and extra attention must be given to 
each processing step. 

The InAs photovoltaic detector whose characteristics were calculated 
in the previous section has been successfully fabricated. This section describes 
the process used in developing the device fabrication techniques for a high 
sensitivity InAs photodetector. Part of the process has been used in fabrication 
of InAs ar ray  sensors which will be discussed later in this report. 
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2. Wafer Preparation 

Single-crystal tin-doped n-type InAs ingot materials with car r ie r  
concentrations in the range of 2.5 X 1016 to 3 .0  x 1016 carriers/cm3 and with 
mobilities in excess of 25,000 cm2/volt-sec. have been purchased from Mon- 
santo in St. Louis, Missouri. The crystals were grown by the Czochralski 
method with 111 orientation. The following general cri teria were used in 
selecting these materials: 

1) Minimum dislocation density 

2) Maximum car r ie r  mobility 

3 )  

Wafers were prepared by slicing, with a wire saw,  to a thickness of 

Uniform distribution of impurity density. 

about 20 mils and to an area of one cm diameter. 
lapped to flat and parallel surfaces. Then the B-face (arsenic side) w a s  
polished mechanically to a mirror-l ike surface. After mechanical polishing, 
the surfaces were further polished with 5% bromine and 95% methanol to re- 
move any scratches resulting from the mechanical polish. 

Both sides of the wafers were 

Note that it is quite difficult to polish the A-faces (indium side). In 
fact, the chemical polish resulted in etchpits on the surface. However, the 
polished B-faces appeared to be scratch-free and optically flat. 

The polished wafers were removed from the holders and soaked and 
boiled in trichloroethylene to remove the black wax, and then were degreased 
in f resh trichloroethylene vapor. 

The cleaned wafers were stored and kept in isopropyl alcohol until 
ready for the next process. 
the wafers were etched with HF, washed thoroughly in separate baths of dis- 
tilled water, and were allowed to dry in a i r  on a clean filter paper. 

P r io r  to loading into furnace for pre-oxidation, 

3.  Deposition of Diffusion Mask 

In order to fabricate high-density multi-element detector a r rays  of 
InAs, selective masking against diffusion is required to construct multiple 
structures. Since InAs, unlike silicon, does not have a native diffusion mask, 
it is necessary to deposit a foreign diffusion mask on h A s  substrates. The 
deposition of such a mask with good effectiveness of masking against high 
temperature diffusion is not simple; thus, a special techinque is required. 

A technique for depositing Si02 on III-V compound semiconductors 
and metals has been developed at the Electronics Laboratory of the General 
Electric Company. 2 The deposition involves the glow discharge decomposi- 
tion of an organic silicate in an oxygen plasma atmosphere at room temperature. 

2See Phase I1 Technical Report. 
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Since i t  is processed at  room temperature, a possible surface deterioration 
of the InAs from loss of the voltatile arsenic is not encountered during such 
deposition. 

It has been found, however, that in order to adhere the Si02 well to 
the InAs surface, it is required to pre-oxidize the surface. The pre-oxidatioii 
was carried out in an oxygen atmosphere at 500OC for 10 min. 
oxidation gave a native indium oxide on the InAs surface on which the deposition 
of Si02 was excellent. 

This pre- 

It has also been found that the pre-oxidation of InAs prior to the Si0 
deposition is very critical. If the indium oxide is too thick, it is decompose$ 
by the Si02 at diffusion temperature; on the other hand, if the indium oxide is 
too thin, the Si02 does not adhere well to the surface. The proper thickness of 
the preoxide w a s  determined and controlled from wafer to wafer by observing 
the surface color. 

If the silicon oxides a r e  not properly deposited on the InAs wafers, 
i t  is extremely difficult to fabricate multi-element InAs detector a r rays  with 
a high degree of uniformity between individual elements. It has been found 
that the fast deposited Si02 layers cracked during the diffusion and did not 
mask the selected areas.  
that ave a satisfactory result was measured to be approximately equal to 

the windows for  the detector element were etched by means of the photoresist 
process, which is to be discussed next. 

The thickness of the deposited silicon oxide layers 

2500 s . The properly deposited oxides always gave sharp resolution when 

4 .  Photoresist Process 

The areas  to be diffused were delineated by means of a photoresist 
etching technique; a combination of photographic and chemical etching tech- 
niques. Because of the deposited Si0 
can not be used, and thus an applicab?; process should be determined to obtain 
an optimum result. The following processes have been found to give satisfac- 
tory results: 

the standard technique for silicon 

Photoresist coating: The silicon oxide-deposited surface 
was coated with KMER at about 400 rpm for 10 sec, and 
then allowed to dry in air for 30 min. 

Prebake: The resist-coated sample was dried at  8OoC for 
30 min. The sample was then ready for exposure. 

Exposure: Using an appropriate mask, the sample was 
exposed in an exposure machine for 4 sec. The unexposed 
areas were developed and the resist removed from them. 

Postbake: The exposed resist on the sample was baked a t  
about 15OOC for 24 hours to give a good chemical resistance 
of photoresist. The sample was then ready for chemical 
etching for the silicon oxide. 

Etching: The unmasked Si02 was then etched in a buffered 
ammonium bi-flouride solution until all the unprotected 
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Si02 was etched away. The etching time usually ran for 
about 1 . 5  min. 

6) Resist removal: After etching the Si02, the masked photo- 
res is t  was removed by A-20 stripper and the wafer was 
rinsed in warm running distilled water. The finished 
sample was then degreased in trichloroethylene vapor 
and stored in  propanoltill next process. Typical sharp 
resolution etched windows of the oxide diffusion mask on 
an InAs wafer a r e  shown in Figure 6. The wafer was then 
ready for diffusion. 

5. Diffusion Process 

For the fabrication of p-n junction photovoltaic sensors, the diffusion 
technique is very important, not only because it controls the uniformity of de- 
tector characteristics but also the sensitivity of the detectors. Unlike Si and 
Ge, the diffusion of impurities into III-V compounds is much more complicated 
because the compounds tend to dissociate and lose the more volatile element 
(Group V) a t  diffusion temperatures and both elements (i. e. In and A s )  have a 
greater tendency to react chemically with the diffusion impurities. 

All diffusion processes have been carried out in sealed silica am- 
mm Hg. Pr ior  to use, the poules evacuated to approximately 10-5 to 

inside of the ampoules was cleaned by soaking in a White Etch 4 1  for 30 min. 
This cleaning etched the surface of the tube slightly to give a clean finish. 
The tube w a s  then thoroughly rinsed in several changes of distilled water, and 
evacuated to about 10-7 torr .  Then the ampoule was baked at about 900°C by 
flaming the outside of the tube. The tube appeared to be very clean and was 
kept i n  vacuum until ready for diffusion. 

Sample boats used for the insertion of the wafers, doping charge, and 
background source into the ampoule were made from ultra-high purity graphite 
a s  shown in Figure 7.  The boat was designed to obtain symmetry along the 
ampoule tube for the wafers. The JnAs wafers were loaded at the center of 
the boat, a background source ( Ids  powder) was loaded in the next two holes, 
and a dopant (In-Cd alloy) was placed in the last two holes of the boat. Since 
the boat was in direct contact with the sample, the boat was cleaned very care- 
fully by soaking in a solution of 1:3 volumes of HNO3 and HC1 for two hours 
and then rinsing in  distilled water. Finally, the boat was baked out in vacuum 
in order to remove any high vapor pressure materials remaining in the 
graphite which might contaminate the wafers during diffusion. 
boat we have obtained uniform and reproducible p-n junction devices of InAs. 

Using this 

During the diffusion, the partial pressure of the more volatile con- 
stituent, arsenic, was controlled by providing extra arsenic in the diffusion 
ampoule as a background source. When there was no background source in 
the ampoule during the diffusion, the surface of the sample was severely 
pitted and very nonuniform. 
use of InAs powder, a s  a background source, provides excellent surface 
conditions and a cleaner wafer surface than does pure arsenic. The powder 
was made from n-type polycrystal InAs ingot whose car r ie r  concentration was 
about the same as that of the sample wafers. 

For satisfactory results, we have found that the 
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Figure 6. Deposited S O z  Diffusion Mask 
on InAs Substrate 

I n - C d  S O U R C E  -- H O L E  

Figure 7. Graphite Diffusion Boat 
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The diffusants for acceptor impurity in III-V compound semiconduc- 
tors, in general, have been Zn and Cd. Since these materials have a very 
high vapor pressure, it  is usual to alloy them with a low vapor pressure 
material such a s  In or  Ga. We have used an In-Cd alloy source for InAs as an 
impurity source for diffusion. The purpose of the alloy is to control the Cd 
vapor pressure, which in turn determines the surface concentration during 
diffusion. The doping levels in the diffused p-region can be thus controlled 
by varying the Cd content in the In-Cd alloy source. 

The effect of Cd contents in the alloy on the device characteristics 
Figure 8 shows a typical V-I can be demonstrated in the following figures. 

characteristic of the diode diffused with a straight Cd source at  75OoC for 40 
min. Figure 9 shows a V-I characteristic of the diode that was diffused with 
50% of Cd content in an In-Cd alloy source for one hour at 750O. A typical 
V-I characteristic of the diode fabricated by a two-step diffusion is shown in 
Figure 10. Two-step diffusion consisted of pre-diffusion and drive-in-dif- 
fusion; the pre-diffusion was carried out with a straight Cd source at 7OOOC 
for 15 min, and the drive-in-diffusion was done at  75OOC for an hour without 
any impurity source. These diodes were fabricated without using any dif- 
fusion mask and by etching mesa structure after diffusion. 

These diodes exhibit some degree of tunneling, indicating that the 
diffused acceptor impurity is "so" high and the junction is practically degener- 
ated. The diode diffused with straight Cd shows more abnormal character- 
istic than those of other two diodes. The diode of two-step diffusion exhibits 
a closer diode characteristic which appears more or  less like that of a back- 
ward diode. This means that the acceptor impurity is still high. 

The above results clearly indicate that a high Cd content source used 
in  diffusion causes a poor junction characteristic. In some cases, the InAs 
surface was damaged showing some etch-pits when a high Cd content source 
was used in diffusion. The two-step diffusion appears to give a lower impurity 
doping, but because of the additional processes involved it has been difficult 
to control uniform and reproducible devices. Instead, all  efforts were directed 
to control the Cd concentration in the In-Cd alloy source for one-step diffusion, 
It wil l  be seen later that a considerable decrease in the Cd content of the alloy 
dopant source leads to an excellent junction characteristic and a sensitive 
photovoltaic detector diode. 

Many diffusion runs have been performed in order to determine an 
optimum diffusion condition. An hour diffusion a t  74006 with a 3% Cd-970/, 
In alloy source appears to produce optimum device characteristics. Thq In-Cd 
alloy sources were formed in a hydrogen alloy station by mixing pure Cd and 
pure In in proper portions at about 400OC. The low Cd concentration in the 
alloy source has been proved to give excellent results, which will be discussed 
later. 

Junction Observation: 

The diffusion process and the optimum design of any junction devices both 
depend on the junction depth and flatness. To measure these, both chemical 
delineation and staining techniques have been commonly used. While junction 

23 



300'K 77O/C 

Figure 8. V-I Characteristic of Diode Diffused 
With Straight Cd. 
(Scale: V=20 ma/div. H=O. 1 volt/div.) 

Figure 9. V-I Characteristic of Diode Diffused 
With 50% Cd. 
(Scale: V=10 ma/div. H=O. 1 volt. div. ) 
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Figur .e 10. V-I Characteristic of Diode of 
Two- Step Diffusion. 
(Scale: V=20 ma/div. H=O. 1 volt/div. ) 
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Figure 11. Typical Photograph of Stained 
P-region 
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delineation methods for the more common semiconductors a r e  readily avail- 
able, this is not the case for InAs. The normal staining technique that is used 
for Si, Ge, and GaAs is more difficult to use with InAs because the intrinsic 
carr ier  concentration at  room temperature is so high. 

However, heavily doped p-regions have been observed by staining. After 
diffusion with a straight Cd, the diffused sample was lapped and polished a t  
some convenient low angle to the original surface to obtain the necessary mag- 
nification. A droplet of gold chloride solution (0.66 grams of HAuC143H20 in 
a liter of water) was then placed on the polished cross-sectioned surface 
under a strong light for one minute. After rinsing with water, a droplet of a 
solution containing 5 parts of water, 2 parts of HF, and 2 parts of H202 was 
placed on the surface for one minute. The etch stains the heavily doped p- 
region a s  shown in Figure 11. 

It is interesting to note that unpolished samples gave better junction de- 
lineation than the polished ones though both unpolished and polished samples 
were diffused at the same time. This indicates that the unpolished samples have 
been diffused with higher car r ie r  concentration than the polished samples when 
they a r e  diffused at the same time. 

For the samples diffused with low Cd concentrations, it was difficult to 
observe clear junction definitions a t  room temperature. An attempt was made 
to delineate the lightly doped junction by an anodic oxidation, but no successful 
result was obtained. Since a lightly doped junction is required for a sensitive InAs 
photodetector, i t  is clear that no common junction stain that is used at room 
temperature can be employed to observe the true junction of the InAs diode. 

6. Ohmic Contact 

Ohmic contacts to both p-type and n-type InAs semiconductors were 
For p-type obtained by means of vacuum deposition and alloying techniques. 

diffused regions, 5% Cd with 95% Au and for n-type materials, 5% Sn with 
95% Au were used, respectively. Addition of a small amount of In to the alloys 
appears to give a good result. 

In order to insure that the contacts were ohmic, the following experi- 
ments were performed. Two dot contacts w e r e  made to an n-type InAs sample 
by evaporating Au-Sn through a metal evaporation mask. The contacts were 
subsequently alloyed to the InAs in a hydrogen alloy station. Likewise, two 
ohmic contacts to a p-type diffused region were made by alloying evaporated 
Au-Cd dots. V-I characteristics of the ohmic contacts were measured by " 

probe contact to the alloyed dots, and observed to be linear. Nonlinear char- 
acteristics were observed when the probe made a point contact to the InAs 
surf ace. 

The evaporated ohmic contact on the back side of the substrate not 
only serves  as an ohmic contact, but also provides good conduction of heat to 
the heat sink header. The alloys for ohmic contacts were made at  about 420OC. 
Since this temperature is far below the diffusion temperature, i t  does not 
affect the diffused junctions which were made at  a temperature of 740OC. 
These ohmic contacts gave satisfactory results, and no particular problems 
for ohmic contact were  encountered. 
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7. Surface Treatments - 

The device characteristics were observed to be a strong function of 
the surface treatments after diffusion. The indium oxide on the surface, which 
had been used in order to deposit the Si02 diffusion mask, acted a s  a surface 
conducting channel a s  will  be seen later, and consequently increased the diode 
reverse saturation current. To remove such oxide after diffusion, it was 
necessary to etch the surface and to give special surface treatments. All 
single devices studied here were planar structures, and the active a rea  was 
chosen to be 0.05 X 0.05 inches. This large area was used to develop a tech- 
nique for a planar process. 

The effect of indium oxide and Si02 on the device characteristics is 
demonstrated in the following figures. 
Sample #/ 28 without removing the Si02 diffusion mask, and a s  seen the diode 
exhibits large leakage current. When the oxide w a s  removed, the device char- 
acteristic was somewhat improved a s  shown in Figure 13. If the same device 
characteristic was cleaned with HF  fo r  10 min, the diode showed further im- 
provement a s  demonstrated in  Figure 14. These results clearly indicate that 
in  order to improve the diode characteristic, the diffusion mask must be re- 
moved after diffusion and the surface must be etched and cleaned. 

Figure 12  is the diode V-I curve of 

After removing the Si02 with HF, the diode that had been etched in a 
strong HNO~:HF:HZO solution, exhibited a distinctive improvement of i ts  diade 
characteristic. A problem in etching the surface with a strong etchant was a 
tendency to destroy the surface uniformity and flatness. Thus, a weaker 
etchant was required and a solution of 5:3:3 of HNO3:HF:H20 was found to give 
good results. An optimum etching time was found to be about 10 sec. 

Further improvement on the device characteristic was obtained by a 
special chemical treatment. The strong oxidizing agent in the etching solution 
used usually attacks the arsenide more than the indium on the InAs surface. 
As  a result i t  appears that the etching leaves an indium-rich non-stoichiometric 
surface on the InAs, which in turn readily oxidizes. As discussed before, the 
indium oxide degrades the device Characteristic. 

In order to treat the etched surface, the following solution of 

1 .5  gm Ethylenediaminetetraacetic acid (EDTA) 

0.3 gm Potassium hydroxide (KOH) 

0.3 gm Tartaric acid 

100 ml  Distilled water 

was used. After the chemical etching, the devices were soaked in  the above 
solution for prolonged time. A typical V-I characteristic of the diode treated 
with the EDTA over night is shown in Figure 15. As seen, the diode has 
been improved considerably over the diode with Si02 (Figure 12). These 
diodes were diffused with 5% Cd alloy source for an hour at 740OC. 

No noticeable surface change w a s  observed after the treatment with 
the EDTA. The exact mechanism, of reaction of this solution with the InAs 
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Figure 12. V-I Characteristic of Sample #28 
with oxide 
(Scale: V=lOma/div. H=O. 1 volt/div. ) 

7 7'K 

Figure 13. V-I Characteristic of Sample #28 
with oxide removed 
(Scale: V=lOma/div. H=O. 1 volt/div. ) 
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Figure 14. V-I Characteristic of Sample 128 
Etched in H F  for 10 rnin. 
(Scale: V=lOma/div. H=O. 1 volt/div. ) 

77'K 

Figure 15. V-I Characteristic of Sample #30A 
Soaked in EDTA over night 
(Scale: V = 1 ma/div. H=O. 1 volt/div. ) 
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surface is not yet known, but the complexing agents, such as EDTA, have been 
used to dissolve metallic ions on the surface of semiconductors. This indicates 
that the above solution of EDTA may preferentially attack or  dissolve the 
indium-rich surface, resulting in a more nearly stoichiometric InAs surface. 

The effect of the indium oxide on the device characteristic was dem- 
onstrated by the following experiment. A device that had been processed 
through all the above steps showing a good V-I curve, was anodized over the 
whole surface. The characteristic after the anodic oxidation i s  shown in 
Figure 1 6 ,  and the curve for which the oxide has been subsequently removed 
with HC1 solution is also shown in the same figure. It is clear that the indium 
oxide, indeed, increases the surface leakage. 

The surface passivation of InAs planar diode was  accomplished by 
vacuum deposition of arsenic trisulfide (AS~SQ). Figure 17 shows the V-I 
characteristic of a diode passivated with AszS3. To measure the breakdown 
voltage of a vacuum-deposited arsenic trisulfide thin-film insulator, an AsZS3 
film was  sandwiched between two thin-film metal electrodes. The breakdown 
voltage across the films w a s  measured to be 60 volts. This indicates that the 
aresenic trisulfide film can be used as an insulator on the device surface so 
as to fanout the leads by etched thin-film conductors for array fabrication. It 
was found, however, that the arsenic trisulfide melts near 30OoC. 
after deposition of AszS3, the device processing temperature must be less 
than 300OC. 

Therefore, 
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anodized oxide 
surface removed 

anodized 
surf ace 

Figure 16. Typical V-I Characteristics of Sample 
#30A after anodized surface and re- 
moved with HC1 
(Scale: V=5ma/div. H=O. 1 volt/div. ) 

Figure 17. V-I Characteristics of Sample #34-A 
Passivated with As2S3 
(Scale: V=10 ya/div. H=O. 1 volt/div. ) 
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8. Summary 

Some of the results developed in this section for large junction area, 
discrete, planar InAs infrared photodetectors a r e  summarized in Table IV. 
The corresponding diffusion conditions a r e  also shown in Table V. 

TABLE IV. 

SUMMARY OF DISCRETE 
DEVICE DETECTORS 

Sample Temperature Signal Voltage Dark Noise Voltage D* 1 

30A t 1530K 770K I. 2 x 10-4 2.0 x 10-8 2.4 x 109 

No. (volts) (volts) cm. cpsz/wat 

6 . 2  xlO-5 ' 5.0 x 4.8 x lo8 

1 .4  x 10-5 2 .0  x 2.6  x lo8 t 153OK 770K 2.2 x 10-5 2.5 x 10-8 3 . 4  x 108 

31 

6.6 x 1 . 4  x 10-8 1 . 8  x 108 t 770K 1.9 x 1.8 x 4.2 x 108 

32 

1533K 

I. 2 x 10-3 7 .0  x 10-7 6 . 7  x 108 

34A t 1530K 770K 4.3 x 10-4 7.0 x 10-7 2.4 x 108 

TABLE V. 

SUMMARY OF DIFFUSION CONDITIONS 

Sample No. Diffusion Source Diffusion Temp. (OC)  Diffusion Time 

30A 6% Cd 740 1.0 hour 

31 6% Cd 740 1 . 5  1 
32 10% Cd 740 0 .5  I 

*34A 3% Cd 740 1 .0  

(*) The surface was passivated with arsenic trisulfide (AszS3). 

The D* measurements were made with a blackbody temperature of 
500°K and chopping frequency of 625 cps. Detailed optical measurements a r e  
discussed later in this report. 
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The diffusion condition for Sample #34A appears to be an optimum 
condition, and its signal voltage is two orders  of magnitude 
greater than those of other devices diffused under different conditions. How- 
ever, the noise voltage is also increased a s  shown in  Table V. Note that, as 
the device is improved, the signal is increased a s  well a s  the device noise. 
The higher noise is attributed to the higher diode impedance, which is inversely 
proportional to the reverse saturation current. It is interesting to note that 
the devices fabricated with higher Cd concentration in the diffusion source 
exhibit signal voltages at 153OK that a r e  consistently higher than those at 77'K. 
A further effort is needed to study this effect. 

Some of the processing techniques developed in  this section will be 
utilized in the development of a r ray  fabrication in the following section. As  
wil l  be seen, however, due to the complicated array fabrication, new tech- 
niques a r e  required to complete a r ray  process. These a re  discussed in the 
next section. 

C. FABRICATION OF InAs PHOTOVOLTAIC DIODE ARRAYS 

1.  Introduction 

Unlike the descrete device fabrication, the array fabrication pro- 
cesses a re  more complex and difficult since the array sensors consist of a 
mosaic of individual sensitive elements. The requirements imposed upon 
these mosaics of multi-element diode a r rays  a r e  high-density patterns of very 
small elements of extreme dimensional accuracy, coupled with a high degree 
of uniformity of the electrical and optical characteristics of the individual diode 
elements. 

The a r ray  dimensions a r e  f i f ty  5 x 7 mil diode elements, spaced 10 
mils apart center-t9-center, in a 2 x 25 staggered line array,  part of which 
is shown in Figure 6. The a r ray  fabrication process has been started with 
the optimum processing conditions obtained from the discrete device fabrica- 
tion discussed in the previous section, but i t  requires some additional tech- 
niques to achieve uniform and sensitive detector diodes in the array.  

The a r ray  fabrication process is the same as before up to the dif- 
fusion process discussed in  the previous section for the discrete device fab- 
rication, and the optimum conditions have been utilized. All diffusions were 
well under control, with reproducible device characteristics being obtained. 
Therefore, it has been possible to diffuse several  wafers during each diffusion 
run to save time and materials. Y 

However, the post-diffusion surface preparation and the final as- 
sembly steps have been found to be extremely critical in the array fabrication. 
The following sections will  describe the processes developed for both planar 
and delineated arrays.  Along with these processes, the problems associated 
with the array fabrication will  also be pointed out. 
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2. Planar Array Process 

Since all the processes up to the diffusion a r e  the same a s  before, the 
planar processing steps after the diffusion a r e  described as  follows: 

a .  Post-diffusion Surface Preparation 

After diffusion, the Si0 was removed by etching the surface, 
except along the periphery of the wa ? e r .  This remaining oxide was used a s  a 
supporting insulator for wire bonding. A critical problem in etching the sur-  
face was a tendency of the etching process to destroy the surface uniformity 
and flatness. Therefore, care must be exercised not to remove the diffused 
windows completely but to leave some visible pattern of the diffused p-regions, 
to make subsequent photograp hie processes possible. 

b. Second Deposition of Si02 

A second deposition of the siliconoxide was required to form a 
small ohmic contact to the diffused p-regions. Many attempts to place small 
ohmic contacts at the proper area of the diffused p-regions by means of a 
reverse s t r ip  technique remain unsuccessful to date. The deposition process 
was the same a s  before, and thus the surface must be etched and cleaned 
again after use. 

c. Ohmic Contact 

At the center of the diffused regions, 3 x 5 mil windows were 
opened and then the alloyed ohmic contacts were made a s  described before. 
This contact area was used to develop techniques for achieving good ohmic 
contact and if this technique is feasible, a new mask can be used to locate the 
contacts at one side of the diffused windows, thus maximizing the active areas  
for the optical signal. 

d. Final Surface Etching 

The indium oxide introduced during the second deposition of 
Si02 must be removed by etching the surface again. 
the surface etching must be accomplished carefully so that the metallized 
ohmic contacts will not be destroyed. A mild etching solution of 1:1:1 of 
HN03:HF:HzO was used. After etching the surface, the array wafer was 
soaked in the EDTA for two hours and then rinsed with distilled water. Note 
that the EDTA solution did not attack the alloyed ohmic contacts. 
is a typical array, showing the diffused a reas  with the ohmic contacts after 
final surface etching. 

However, at this point, 

Figure 18 e- 

e.  Surface Passivation 

Surface passivation of InAs is not only important to protect the 
surface, but also required to fan out the leads for a r ray  fabrication. To 
connect from the diffused diode elements in  the a r ray  to the external circuits, 
it was necessary to use an insulator material for evaporated lead connection, 
as shown in Figure 19. It has been shown that the vacuum deposited arsenic 
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Diffused Region Ohmic Contact 

Figure 18. Typical Ohmic Contacts to the Diffused Areas 

trisulfide (As2S3) thin film is an excellent surface passivation on InAs surface. 
However, the following problems in using this insulator with InAs have been 
found: (1) The film did not adhere well to the I n k  surface, such that sub- 
sequent photographic processing was difficult. It was found, however, that the 
adherence can be improved by heating the InAs substrate during the deposition. 
The substrate temperature of 150OC appears to give good results, (b) The 
film was quite sensitive to certain chemicals used in the photoresist process - 
for example, the coated photoresist on the film could not be baked; it was 
removed by degreasing with trichloroethylene after the process; and (3) Since 
the film melts near 300OC, the deposited As2S3 on InAs substrates can not be 
heated more than 300OC for subsequent processing. For example, thermal 
compression wire  bonding can not be used, because the required temperature 
is much higher than 300OC. An attempt was also made to use the photoredst 
a s  an insulating passivation material on the InAs surface. 

f .  Fan-out Leads 

After opening the ohmic contact a reas  through the As2S3 insula- 
tor layer, gold metallization of the whole surface was made. Then the lead % 

patterns were made, using Shipley's Az photoresist. It appeared, however, 
that the gold adherence to the arsenic trisulfide film was not good, but the 
use of aluminum for the fan-out leads appeared to be excellent. Its adherence 
to the film and photoresist was better than that of gold. A completed typical 
fan-out a r ray  is shown in Figure 20. 

\ 
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Figure 19. Cross-section of a Completed Planar Array Element 

The 7 - 1  characteristics of the diode elements of the array were 
measured by probing the evaporated leads. A typical characteristic of a 
diode element is shown in Figure 21. It is seen that the diode is quite leaky 
and the sensitivity is not that good. This may be attributed to the fact that 
since the same mask was used for the ohmic contact and the opening through 
the As2S3 film, the metallized thin-film leads may make contact to the dif- 
fused surfaces. 

Many attempts were made to improve the device characteristic 
and detector sensitivity of the a r ray  fabricated by this planar process. But 
the process has been so tedious and complex that we have not been able to 
obtain a planar process that gives a uniform and acceptable sensor array.  
Therefore, we have attempted to develop a different technique for a r ray  fab- 
rication. This process is quite simple and yet the diode characteristic and 
optical sensitivity a r e  far  better than those of the array processed by the 
planar technique. The new processing steps will  be discussed in the next sec- 
tion. 

3.  Delineated Array Process  

The finalized a r ray  processing technique has been found to be rela- 
tively simple and straightforward, having a minimum number of critical steps. 
This process is identical to that described in the previous sections, through 
the diffusion processes. After diffusion, ohmic contacts a r e  applied to the 
diffused diodes and the entire surface cleaned, using the same procedure pre- 
viously described. The duration of this surface cleaning process was focnd to 
be an important control for the device leakage current. The a r ray  diodes 
with ohmic contact are shown in Figure 22. 
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Figure 20. Typical Top View of a Completed 
Planar Array 

\300°K 100°K 

Figure 21. Typical V-I Characteristic of a Diode 
Element in the Planar Array Shown in 
Figure 20. (Sca1e:V = 10 pa/div. 
H = 0. 1 volt/div. ) 
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A basic problem encountered in the fabrication of high density 
arrays of InAs is the interconnection of the detector elements to the external 
electronic circuits, Since the InAs, unlike silicon, does not have its native 
insulating oxide, an additional complication is associated with the fabrication 
of multi-element detector array of InAs sensors. Basically, the process of 
lead attachment follows the classical approach of direct connection of the leads 
to the detector elements in the array.  A pulsed thermocompression ball 
bonder was  used to bond one mil gold wire from the alloyed sensor elements 
to the fan-out circuit board. The process was  lengthy, but the connections 
were excellent and quite reliable. A complete package of the wire bonded 50 
leads InAs sensor a r ray  is shown in Figure 23. 

The uniformity of sensor elements was measured qualitatively by 
observing the diode characteristics a t  room temperature, which were quite 
uniform. A typical diode characteristic of the array elements at room 
temperature is shown in Figure 24. Figure 25 shows its curve at ??OK. It 
is seen that the reverse saturation current is extremely small over a 25-volt 
range and the breakdown at  30 volts is very sharp. It should be noted that the 
device characteristics of the delineated InAs ar ray  detector elements a r e  far 
better than those of the previous devices and that none of these features have 
previously been reported in the open literature. 

More quantitative measurements of this a r ray  will be discussed and 
all the pertinent optical and electrical measurements will be included in  the 
following section. 

D. MEASUREMENTS OF THE InAs PHOTODETECTOR ARRAY 

Measurements performed on the array elements, described in  the previous 
section, are discussed in this section. Since the performance of the delineated 
array is far better than that of the planar array, the measurements for only the 
delineated a r rays  were made, except where otherwise noted. 
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Figure 22. Delineated InAs Ar ray  

Figure 23. Wire Bonded Complete Package of lnAs 
Array  
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Figure 24. Diode Characteristic of a Typical Array 
Element a t  Room Temperature 
(V = 0. 1 mA,/div, H = 0. 1 V,/div. ) 

Figure 25. Diode Characteristic of a Typical 
Array Element at 100°K 
(V = 10 p.A/div., H = 5 V/div. 
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1. Electrical Measurements 

a. V-I Characteristics 

The diode characteristics of an array element were meas- 
ured accurately at both room temperature and 100°K. The characteristic at 
room temperature is shownin Figure 26. The dynamic resistance of the diode 
(Rd) was  calculated from the slope of the curve at zero point; R = 270 ohms. 
At 100°K it was  difficult to measure the current at near zero vo tage because 
of the extremely small current, but at higher voltages the measurements were 
made. The semi-log plot of the forward characteristic is shown in Figure 27. 
The value n is equal to one, indicating that no recombination of car r ie rs  takes 
place in the space-charge region of the junction. Figure 28 shows the char- 
acteristic in  the reverse direction. It is seen that the leakage current of the 
diode is extremely small; less than one nanoamp up to the reverse bias voltage 
of 25 volts and a sharp breakdown occurs at 30 volts. It should be noted that 
the device characteristics of this type I d s  diode a re  far better than previously 
reported and the low leakage nature of the diode is an excellent feature for  
sensitive infrared photodetector. 

b. Noise Measurements 

The noise measurements were performed using a Princeton 
Applied Research (PAR) Lock-in- Amplifier with type A preamp, a Hewlett 
Packard 302 Wave Analyzer, and a Ballantine 320 true RMS Volt Meter. The 
system frequency was determined by the tuned amplifier of the lock-in- 
amplifier with a Q of 10. The bandwidth of the wavelength analyzer was 6 cps. 

Typical noise versus frequency for  a large area planar device 
(see Figure 17) is shown in Figure 29. It is shown that the noise voltage 
follows the relation, l/flI1 where m = 1 . 4 .  The exact mechanism for this large 
excess noise generation in  the diode is not fully understood at the present time. 
It appears, however, that the excess noise depends strongly on the surface of 
the diode. The large junction a rea  diodes, which were, made in  the early phase 
of this program (see Section II. B), have always exhibited a current-controlled 
negative resistance type of breakdown. In some cases the diode voltage oscil- 
lates at breakdown. Typical V-I characteristic of such oscillation is shown 
in Figure 30. 

One possible explanation for the negative resistance and oscil- 
lation is that small regions of the diode break down at a slightly lower toltage. 
Thus, the breakdown current does not pass uniformly through the junction over 
the entire junction area, but flows through the local junction regions causing 
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Figure 26. Typical Array Diode Characteristic 
at Room Temperature 
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Figure 27. Forward Characteristic of a 
Typical Array Diode at 1000K 
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Figure 2. Reverse Characteristic of an Array Diode at 100°K 
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Figure 30. Typical Negative Resistance and Oscil- 
lation Characteristic of Large Area InAs 
Diode (Vertical: .05  ma/div. ) 
Horizontal: . 5 v/div. ) 

these regions to r ise  in temperature, 
local breakdown spots that have been observed in silicon avalanche diodes, so- 
called microplasmas. 

This mechanism may be similar to the 

It has been observed that the negative resistance and oscillation 
characteristics a r e  not always the same, particularly after exposure of the 
diode in air ,  indicating that the premature breakdowns occur a t  different spots 
of the junction area.  It has been also observed that the smaller junction a rea  
diodes such a s  the a r ray  elements have not exhibited either negative resistance 
o r  any oscillations. The noise characteristic for the array elements a s  shown 
in Figure 31 is quite different from that of the large junction area diodes and 
shows little o r  no excess noise. Therefore, it seems that the large junction 
area devices a r e  more vulnerable to the excess noise than the smaller junction 
diodes, and that the excess noise is directly related to the negative resistance 
and oscillation; to reduce the excess noise, the diode should not exhibit nega- 
tive resistance o r  oscillation. 

The above noise voltage of an a r ray  element photovoltaic diode 
will be used in the following section to determine the noise-equivalent-power 
(NEP) or  I>* from the responsivity measurements, which is discussed in the 
next section. 
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2. Optical Measurements 

The optical measurements were carried out using a blackbody source, 
a synchronous variable speed chopper, and lock-in amplifier. Figure 32 
illustrates the typical setup for the optical measurements. For spectral 
measurements, accurately calibrated filters were used. For  room tempera- 
ture detector measurements (Td = 300°K), the blackbody source temperature 
was set at 8OO0C (Tb = 800OC). 
the blackbody source temperature w a s  set  at 30OoC. (Tb =3OO0C). The 
photovoltaic signals were measured as a function of the radiation intensity, 
the chopping frequency, and wavelength for room temperature and 100°K. 
Finally, the detectivity D* w a s  obtained from these measurements and the 
noise measurements discussed in the previous section. 

For lOOoK detector measurements (Td=10o0K), 

The photoresponse as a function of the blackbody radiation w a s  
measured in order to s e e  the range of the linear region. The results are 
shown in Figure 33. The radiation intensity onthe detector surface was varied 
by adjusting the position of the detector with respect to the blackbody source with 
constant source temperature. It is seen that at 100°K the output voltage of the 
detector is saturating above about 3 mv, and below this point the curve is quite 
linear. In the previous report we have shown that the photon generated excess 
minority car r ie rs  at junction = noePV, where no is the equilibrium minority 
carrier density, V is the output voltage, and p = q/kT. At T =IO0 OK, 1/p = 
8.63 mv. If the generated voltage, V, is much smaller than l / O ,  a n  approx- 
imation can be made and the voltage is directly proportional to the  excess 
minority carr iers ;  that is, to the radiation intensity as shown i n  t h e  figure. 
Therefore, in order to operate the InAs photovoltaic detector i n  the linear 
region, the output signal voltage should be below a few millivolts. The 
signal level of a practical InAs infrared detector is usually much smaller than 
these voltages and thus no non-linearity will occur in typical application. At 
room temperature, the signal voltage is linear with the intensity even though 
the blockbody temperature w a s  raised up to 800OC. 

The signal voltages were measured as a function of the chopping 
fre uencies for  both room temperature and 100°K as shown i n  Figure 34. At 
100 K, the signal is 3 dB down at around 1200 Hz, whereas the signal at room 
temperature is constant with the chopping frequency. This is attributed to 
the fact that at lower temperatures, the diode impedance is s o  large that the 
detector becomes RC limited. As shown in Figure 26, the diode impedance 
at room temperature was about 270 ohms, whereas at  100°K the diode dynamic 
resistance w a s  so high that it w a s  difficult to measure. This indicates that 
at low temperature the photovoltaic mode of operation may not be recommended 
for high-speed application. However, typical operating temperature of I d s  
detectors is much higher than 100°K and therefore a higher speed would be 
expected. Furthermore, since the diode leakage current is extremely small, 
the reverse bias photodiode appears to be quite promising for high-frequency 
application, 

8 
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Figure 32. Optical Measurement Setup 

The spectral response measurements of a typical array element 
were performed using calibrated filters and a blackbody source. At a detector 
temperature of 100°K, the blackbody temperature was set  at 30OoC. For room 
temperature measurements, a source temperature of 8OOOC was used in order 
to increase the signal level. 
length for the two temperatures. The responsivity is defined by the signal 
voltage divided by the optical power signal (volts/watt). It is seen that at room 
temperature the peak is at about 3 . 5  microns and a t  100°K, the peak occurs at 
3.  1 microns. These results agreed with the available data. Thus, it  is in- 
sured that the a r ray  elements respond properly to the wavelength. The total 
blackbody responsivities a r e  

Figure 35 shows the responsivity versus wave- 

2 F$,b = 1 . 4  x 10 volts/watt for Td = 300°K 
5 %b = 2.3 x 10 volts/watt for T~ = 100'~. *. 

D* versais wavelength at  100°K and 300°K is shown in Figure 36. 
D*'s were calculated from the responsivity and noise measurements; 

D* = (Responsivity ) 
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8 
2 where Ad = 1.8 X volts for A f  = 6 Hz,  

and at Td = 300°K Vn = 1.5 X 10- volts for Af = 1 H z .  The blackbody D*bb '~  
a r e  ._- - 

cm , at T = 100°K Vn = 2.2 x 

3. Uniformity of the Array Elements 

The uniformity of the a r ray  elements was measured under the follow- 
ing test conditions: 

Blackbody temperature = 500OC 

Array temperature = -1OOOC 

Distance to Array = 9.0  inches 

Noise Bandwidth = 6.0 Hz 
Blackbody aperture = 0 . 2  inches diameter 

The results were calculated and tabulated using a computer, and the computer 
print out is reproduced in Table VI. The data a r e  plotted in  Figure 37. 
The average values for the detector elements in this array a r e  

1 

Average D*bb = 1.1 x 10l1 cm (HZ) "/watt 

Average Responsivity = 2.4  X l o 5  volts/watt 

The distribution of values of D* for the elements a r e  tabulated below: 

Spread % of Elements Within Spread 

It appears that the cause of non-uniformity of the array elements 
is attributed to the direct wire bonding to the detector elements. Differeiit 
detector geometry and wire bonding technique will  improve the array uniform- 
ity. 

4. Isolation Measurement 

The isolation of the elements in the array was determined by 
illuminating the array with a .040 spot and measuring the signal measured a t  
each diode in the array.  The results, shown in Figure 38, demonstrate that 
each element is independent. As the spot of light is moved from element to 
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TABLE VI. 

D* AND RESPONSIVITY FOR ARRAY 56-2-P2 
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Figure 37. Data Plot, Array Element Uniformity 
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element, the corresponding photovoltage increases to the peak value, as  in- 
dicated by the three curves in the figure. Although it was not an intended out- 
put of this measurement, the approximate linearity of the diode is indicated by 
the curve. 

1 2 3 4 5 6 7 8  

POSITION 2 

POSITION 3 

SPOT INTENSITY 

POSITION I 

POSITION 2 - 

10 II 12 13 14 15 16 17 18 

ARRAY ELEMENT NO 

Figure 38. Array Element Isolation Measurement Results 
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III. PbSnTe DETECTORS 

As a task under the Solid State Image Sensor Research Program, long- 
wavelength detectors were evaluated. One material, PbSnTe, was selected 
for detailed study and evaluation. In addition, during this same time period, 
the General Electric Electronics Laboratory carried out an independent mate- 
rials development for PbSnTe. 
work is reported in this section. 

For  the sake of completeness, much of this 

A. PbSnTe DETECTOR MATERIALS 

1. Crystal Growth 

It has been known for some time that the binary compounds, PbTe 
and SnTe, form a continuous ser ies  of solid solutions of the general formula, 
Pbl-xSnxTe. 
range of 0. 1 to 0. 2, employing the Bridgman technique. 

We have grown single crystals of Pbl-xSnxTe, with x in the 

A variety of parameters a r e  important for the successful growth of 
single-crystal Pbl-xSnxTe. In order to achieve a low density of imperfection, 
and to avoid the formation of spurious nucleation, the radial temperature 
gradient must be kept to a minimum. The axial gradient is a compromise be- 
tween the low vacancy condensation and elimination of constitutional super- 
cooling. A Marshall furnace, with a modified temperature profile, was used 
to grow single-crystal Pbl-xSnxTe by' slowly lowering the melt through a 
sharp temperature gradient (see Figure 39). Marked changes in mechanical 
properties (e. g., brittleness of the wafers) were noticed at  different drop 
rates. A slow drop rate is necessary in order to avoid disproportionation of 
the alloy. 
tained by further decreasing the drop rate. Ingots of Pbx-lSnxTe, 7mm and 
12mm in diameter and 2 to 5 cm long have been obtained, (see Figure 40). 
Laue x-ray diffraction experiments show a well defined single crystal pattern 
(Figure 41). Usually the crystals grow on the (100) plane of the NaCl crystal 
structure. In some cases, there is evidence of strain and twinning. The 
composition of the alloy was determined from x-ray analysis, assuming that 
Vegard's law applies. The crystals were fairly pure and homogeneous. No 
trace of anything other than Pbl-xSnxTe was detected. For x = 0.2, the var- 
iation in x was 10%. The first-to-freeze portion was always rich in Pb, a s  
shown in Figure 42. For a liquid composition of x = 0.2, the first-to-freeze 
solid composition ranged between 0.10 and 0. 14. Near the end of solidification, 
the maximum value of x was 0. 25. These facts indicate (1) incomplete mixing 
in the melt and (2) transport of the solid through the liquid by diffusion. We 
have found that it is indeed possible to grow large homogeneous ingots of 
Pbl-xSnxTe, for various x values, using the Bridgman method, if the condi- 
tions for  crystallization a r e  properly chosen. 

In addition, more homogeneous and less  brittle crystals a r e  ob- 
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a. Pbo. 8Sn0e 2Te Ingot (12 mm dia. ) 

b. Pbo. 8Sn0. 2Te Ingot (7 mm dia. ) 
(Wafers Cut from Single-crystal Boule) 

Figure 40. Photographs of Typical Pbo. 8Sno, 2Te Ingots 

60 



Figure 41. Laue X-ray Diffraction Showing Single- 
Crystal Pbl-xSnxTe Pattern 
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Figure 42. Distribution of PbTe in Pbo. 8Sn0. 2Te Alloy 

We have also grown reasonably large (several mm dimension) crystals 
of Pbo..8Sflo. 2Te by the vapor growth method (Figure 43). 
the stoichometry of the initial powder, i t  was possible to grow both n-and p- 
type crystals. 

Depending upon 

2. Electrical Measurements 

Hall and resistivity measurements have been performed on several 
single-crystal samples. 
coulomb) as a function of temperature for several different crystals. All of 
the samples were Bridgman-grown p-type, and some w re annealed to reduce 

1.5 x 1017/cm3 (annealed). 

Figure 44 shows Hall coefficient values (in cm3/ 

car r ie r  concentration, which at 77 6 K varied from 4 x 1oY9/cm3 (as grown) to 
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Figure 43. Vapor-grown Crystals of Pbo. @no. 2Te 
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Figure 44. Hall Coefficient as  a Function of Temperature for Pbo. 8Sn0. 2Te 
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As shown in Figure 44, for  unannealedsamples the Hall coefficient 
remains constant a t  low temperatures and r i s e s  steadily a s  the temperature 
is increased. For annealed samples, whose car r ie r  concentration is about 
two orders  of magnitude less, the increase in Hall coefficient a t  higher temp- 
eratures is small (and in some cases non-detectable) and is followed by a 
sharp decline until the sample becomes n-type. If we assume that the car r ie r  
mobilities a r e  not too different, intrinsic condition is reached when RH is also 
applicable to lead salt alloys. It is a good guess that i f  the as-grown samples 
a r e  heated to higher temperatures, RH would exhibit a maximum following 
which intrinsic conduction would dominate. The rise in RH can be explained 
either by assuming a non-parabolic, non-ellipsoidal one band model or  by 
assuming a two-valance-band model. The fact that the change in R 
for higher concentration samples seems to favor the two-band model!? The 
pertinent equations for this case are:  

i s  higher 

n 

AE/kT e 

- AE/kT 

-AE/kT r: const. e 

(4) 

where pi ,  p a r e  the hole densities in  the two bands separated by energy A E .  

ratio of car r ie r  mobilities, m1* and m2* their effective masses and e is the 
electronic charge. Results for Sample A-1 a r e  plotted in Figure 45 where 
1 n (RH-Ro/Ro) is plotted against 1/T. The data points fall on a straighk line 
indicating that equation (5) is reasonably well satisfied. From this we calculate 
fi E = 0.04 eV which does not seem unreasonable. 

Ro is the Ha 4 1 coefficient at low temperatures, r is the Hall constant, b is the 

A few samples were cooled to 140K with no significant change be- 
tween 14'K and 77OK. 
field strength was observed. 

Further, no large dependence of Hall data on magnetic 

Hall measurements on vapor-grown crystals show the car r ie r  con- 
centration in the as-grownstate is about an order of magnitude less  than that 
in  Bridgman grown crystals. This encouraging result, coupled with the fact  
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that we can grow reasonably large crystals by the vapor growth method has 
persuaded u s  to devote more attention to this method of growth. 

Figure 46 shows Hall mobility a s  a function of temperature for sev- 
e ra l  single crystal P b  SnxTe samples. At liquid nitrogen temperature, 

In this temperature range p - T-2.0 to 2.5 indicating that the dominant scat- 
tering mechanism is lattice phonons, which is also the case for PbTe. How- 
ever, in order to be certain, the temperature dependence of effective masses  
must be icvestigated. At 82OK, p is also a function of car r ie r  concentration; 
decre ing b about 20 as the concentration increases from 3 X 1017/cm3 to 

mobilities up to 20,OO 6-" cm2/volt sec have been achieved in annealed samples. 

3 X 10 1% /cm Y , in qualitative agreement with the Conwell-Weisskopf formula. 

To sum up, Hall measurements on several Pbl-xSnxTe Sam les  show 
that in the as-grown material car r ie r  concentrations are high (- 10 18 /cm 3 ) 

mobility about 15,000 cm 5 /volt sec  at 82OK. These values are satisfactory 

and mobilities low (-500 cm 2 /volt sec). For device work, particularly a s  an 
infrared photoconductor, this material is of no use. 
these material properties be improved. This has been done by vapor equili- 
bration technique, details of which a r e  described in the next s ction. 
results we have obtained how car r ie r  concentration about 101'/cm3 and 

for photovoltaic detector fabrication. By annealing for longer periods, Harman 
has obtained concentration around 3 x 1015/cm3 and was  able to observe photo- 
conductive response in the 8 p - 14 p region. 12 

Hence i t  is essential that 

The 

For the sake of completeness w e  mention our work on thin film 
Pbo. 8Sn0. 2Te. Thin films of Pbl-xSnxTe were deposited on pyrex, NaCl and 
KCl substrates at 10-6 to r r  from a single source material. 
pattern was registered on the pyrex substrate by conventional photolithographic 
techniques. The thickness varied from 1500 % to 5000 %. Optical absorption 
tests on these films show that the absorption s ta r t s  to fall off in the 71-1 - 8 p  
region. In some cases, a change in the slope of the fall-off curve was ob- 
served, indicating a non- homogeneous film. 

A conductor 

B. FABRICATIOP OF p-n JUNCTIONS O F  Pbo. 8,5110 2Te 

We have prepared p-n junctions of Pbo Sno. 2Te by the isothermal an- 
nealing technique of Brebrickand Allgaier. ' % is well known that excess metal 
and excess non-metal defects introduce donor and acceptor levels, respect- 
ively, in Pbl,xSnxTe. The concentration of these defects can be controlled 
by equilibrating the sample under isothermal conditions with an alloy powder 
of known composition outside of the solidus field. The Bridgman grown 
crystals with 20 mole % a r e  p-type. Various annealing temperatures and 
times have been tried. Junction depths as  large as  7 mils has been obtahed 
after annealing for 53  days. Shallower junctions have been obtained in two 
days of annealing. 

According to recent studies, the diffusion mechanism can be described by 
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Figure 46. Mobility a s  a Function of Temperature 
for the Bridgman-grown Crystal (Sheet 1) 
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where C (x, t )  = net concentration at a distance x from sample surface and 

Cs = constant source concentration, 

Co = initial concentration in the material, 

D = diffusion coefficient, 

t = time, 

1 = sample thickness. 

The diffusion mechanism, however, is sensitive to surface condition and 
crystal defects, and deviations from equation 6 have been observed. 
47 gives a pictorial summary of the sequence of events involved. 

Figure 
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Figure 47. Sequence of Operations in  Fabrication of 
Te Detectors gSnO. 2 
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IV. ELECTRONIC SCANNING AND READOUT 

A. SYSTEM CONSIDERATIONS 

The signal processing section of the image sensor array is designed with 
several primary goals centered around compatibility with the detector array 
in size, operating temperature, and detector characteristics. In addition, 
practical considerations are considered to realize a working model at an ea r ly  
point in time. 

The overall system is shown in the system diagram of Figure 48. The 
system consists of the optical portion before the detectors, including the lens 
and chopper. Following the detectors a r e  preamplifiers and scanning circuits, 
with the required supporting scan control circuits and output amplifier circuit. 
The final signal processing is performed external to the image sensor package, 
and determines the operating system bandwidth for each detector. The mode 
of operation for the external processing could be either a number of channels 
operating in parallel, or a single channel operating serially as shown in Figure 
48. 

The overall system performance is determined primarily by three factors, 
the D* of the detector, the noise of the preamplifier, and the system noise 
bandwidth. Since the latter is determined external to the scan system, i t  may 
be changed at will. The first two are primarily determined by a device (detectors 
in the a r ray  or transistors in the preamps) and how wel l  they match each other. 
The goal of the system design is to achieve the match between the detector 
and preamp such that the effective D* of the system approaches the W of the 
detector. In practice, the preamp adds a small  amount of noise, and the system 
D* is slightly lower than the detector D*. The use of the charge storage 
scanning scheme, when used as shown in Figure 48, does not greatly alter the 
system bandwidth. The integration that takes place in the charge storage 
capacitors is periodically sampled at a rate that is greater than the useful 
system bandwidth; hence, these externally determined bandwidths mask the 
influence of the charge-storage scheme. 

Some of these design goals proved to be somewhat limiting in  implement- 
ation. For example, the complexity of the post scan processing is considerably 
more involved than the comparable pre-scan processing, the latter being 
primarily a consideration of gain and bandpass. 

*- 

The original circuitry, constructed during Phase I1 of the program, was 
designed to be as simple as possible, in order to achieve minimum size and 
complexity. A s  a result, there is little chance to significantly increase its 
performance with simple modification. In particular, gain stability was 
shown to be even more necessary for usable system operation than originally 
predicted. It is possible to 
feedback network; however, 
equally critical problem. 

trade gain stability for gain by adjusting the 
because of sampling noise, the lack of gain is an 
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The use of charge storage readout of the preamps as a scanning mechanism 
has some potential advantages; however, it may magnify other problems. In 
particular, the charge storage system is essentially an integrating scheme, 
and this type of response magnifies D. C. bias variations, 

The commutation of a large number of low-level signals to a coininon bus 
can be accomplished with the scheme of Figure 48. One aspect of importance 
in comniiting 
amount of energy available. 

these very low level signals is the efficient use of the sniall 

Specifically, as the commutating system sequentially connects each out- 
put to only one source at a time, the signal at the multiplicity of unconnected 
outputs is essentially "wasted. '' The straightforward method around this 
problem is to add extra amplification ahead of the commutation process. The 
approach used in the charge-storage readout technique is to integrate this 
"wasted" signal and deliver it during the small  readout time. Thus, an 
approximate ''gain" is available in proportion to the "wasted" energy; L e., 
the ratio of the sample repetition time to the sample time. This, of course, 
becomes significant only for a relatively large number of commutated segments. 

With reference to Figure 48, the currents to be commutated from the low 
level collector circuits charge the commutating capacitors. The digital scan 
generators reverse-bias the switching diodes. The lower bound on the signal 
current is the leakage current of the switching diode. The rate of change 
of signal current should be limited to 112 the scan rate o r  less. A s  each scan 
pulse generator sequentially forward-biases the corresponding switching diode, 
a discharging current flows in the capacitor. Note that all capacitor ground 
returns flow through a common sensing point. This is detected by the output 
amplifier and constitutes the output signal. Thus, when used directly with 
very low leakage devices (compared to the signal currents), the charge- 
storage scheme has a considerable advantage. When a D. C. bias current forms 
a significant portion of the input to the charge storage mechanism, the output 
is extremely sensitive to these small  output variations. Figure 49 shows the 
well known general frequency response of an integrating scheme that is 
responsible for this characteristic. 

The sampling mechanism and physical circuit components limit the actual 
D. C, response in a non-linear manner. This is observed as a saturation 
effect in actual practice, and indefinitely large outputs do not occur. It is 
clear that the integrator should be maintained in its linear range throughout 
the active portion of the input cycle. The input of the integrator consists of 
a DC component and an AC component. The primary function of the DC is 
to bias the integrator operation to permit sampling with unidirectional sampling 
gates. This would not be a requirement of bidirectional circuitry, such IS with 
MOS sampling devices, if  such an output format were acceptable. The uni- 
directional output format is more convenient to use with video processing 
equipment without special modifications. 

The AC operation is primarily determined by the desire to operate the 
preamplifiers with much lower signals than is possible in the DC mode of 
operation. 
of millivolts (the DC offset voltage) and in the AC mode at least three orders  

Typically, the operation is limited, in the DC mode, to the order 
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Figure 49. Frequency Response of Integrating Scheme 

of magnitude less, depending on the bandwidth, and stray pickup. Thus, it 
is desirable to operate in an AC mode from a signal-level point of view, in 
order to approach the detector noise limit in sensitivity. 
can operate with A-C coupled amplifiers and give an apparent DC response 
if the optical chopper is operated in synchronism with the scanning. Essentially, 
the scanning operation can provide the function of synchronous demodulations, 
which can exhibit an overall DC transfer function (optical input to synchronous 
demodulator output). Not all systems require DC response, however, and 
some applications require emphasis on the changes in IR image detail. Thus, 
an A-C coupled system performs this function inherently, if  no optical ehopper 
(modulator) is employed. The output scanning then loses its ability to provide 
synchronous detection. However, since the output must be scanned, it wi l l  
have a regular periodicity. 

The overall system 

No special requirements are imposed on the preamplifier circuits for 
producing an image from the line-scan array. The primary difference in 
operation concerns scanning the input image optically and simultaneously 
presenting the output in a corresponding scanned format. The bandwidth of 
the preamplifier circuits limits the scan rate or resolution unit time in the 
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optically scanned direction. Similarly, the low-frequency preamplifier cut- 
off will determine the discrimination characteristic of the unchopped optical 
input signal. 

B. PREAMPLIFIER REQUIREMENTS 

The preamplifier requirements the line-scanned im 
several conflicting criteri.a. They should be small  to  eliminate fan-in of 
wiring, preferrably at the density of the detector elements. 
simple to achieve the above requirement and to permit fabrication in mass  
form; they need high power gain to permit a fairly large amount of negative 
feedback and to interface the detectors and a fairly large impedance ratio 
from input to output. 

They should be 

The preamp has three major functions to perform; (1) stabilize the 
detector bias (2) impedance matching, and (3) power gain. The first con- 
sideration of stabilizing the detector bias is a result of using the charge 
storage technique. The voltage on the charge storage capacitor varies as a 
function of the incident radiation, ,integration time, etc. The detector voltage- 
current characteristic is sensitive to such variations and causes major changes 
in the performance of the detector. Isolating the detector from the charge 
storage capacitor with a preamplifier then allows an independent choice of the 
optimum detector bias. 

The function of impedance matching is the second crit ical  attribute 
of the preamp. The detector-charge storage combination could give useful 
results only if an impedance matching transformer were connected between 
the two. Typically, a transformer with an input impedance of 105 ohm and an  
output impedance of greater than 109 ohms would be needed to produce the re- 
quired match. The desire to use micro-components, and the unreasonably 
large numbers quoted above, are two reasons this  scheme can not be used. 
Ultimately, it would be desirable to develop a detector with greater than lo9 
ohms; however, for the present, the preamp wi l l  have to perform this function. 
The choice of input impedance could be made to optimize this impedance with 
respect to noise, power transfer, or  detector performance. In general, 
these requirements conflict, and a compromise will have to be reached which 
also considers the range of values obtainable with preamp input components. 
Impedance matching with respect to noise wil l  produce the best system D* 
and is a prime consideration. Impedance matching with respect to maximum, 
power t ransfer  wil l  result in the lowest required power gain of the preamp 
and, hence, the fewest components. However, as a first-order approximation, 
it is not expected that this optimum impedance value will be significantly more 
efficient than the value chosen for the best noise characteristics, The third yc 

mp input impedance would consider the detector performance. 
is operated into a load impedance much lower than the detector 

current flow proportional to the photon input will  flow. If the 
detector is operated into a load impedance much greater than the detector 

will  be developed which approximates the logarithm 
iate values of impedance will  then give a com- 
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The final purpose of the preamp of providing useful power gain will  be 
important only to the extent that the impedance matching 
power transfer. This is because a large gain is already 
charge storage mechanism. To arrive at a mi  
to compromise output impedance for more pow 

C. MULTIPLEXER REQUIREMENTS 

The multiplexing mechanism is a key focal point in 
The design of the preamp essentially revolves about interfacing the detector 
to the niultiplexer circuitry. In the ideal case, no preamp is required and 
the multiplexer is directly connected to  the detector array. In a sense, the 
purpose of the preamp is to  "make up" for the deficiencies of the multiplexer. 
Three parameters are critical to the multiplexer: (1) sensitivity, (2) speed, 
and (3) fan-in (switch ratio and s t ray coupling). 

The sensitivity of the multiplexer directly relates to the size of the pre- 
amplifier. 
system sensitivity. It is, of course, strongly influenced by the speed, and 
fan-in requirements. Thus, polycrystalline photoconductors have been suc- 
cessfully used in commercial equipment to switch one microvolt level signal 
in a few tens of cycles per second. In the present system, it is desired to 
switch 50 signals at sub-milli-second speeds. The available devices force 
several millivolt signal levels for output multiplexing, This, in turn, dictates 
larger preamps. 

Conversely, if  the preamplifier is fixed, it relates to the limiting 

D. CIRCUIT IMPLEMENTATION 

In summary, the design goals of the preamp are (1) ultimate integration, 
(2) minimum size/component count per preamp, (3) low noise figure, (4) low 
temperature operation, and (5) matched system impedance. 

Three basic circuit types are available for the basic circuit design. The 
most straight-forward would be the AC coupled preamp with all elements 
operating independently at its own optimum bias. The goal of ultimate inte- 
gration negates this as a practical solution, since capacitors and transformers 
are required to effect the AC coupling. The second amplifier type would be 
a direct coupled differential amplifier. This type of design requires carefully 
matched components to achieve high gain with few components. In this respect, 
integrated circuits stand out as one method of achieving this desired match 
between components. The third type of circuit would use complimentary 
transistors to allow DC negative feedback for bias Stabilization. This is pro- 
bably a more desirable form of bias stabilization as contrasted with thedif- 
ferential case where the degree of balance is required to control the saturating 
o r  cutting off of an advanced amplifier stage. This is particularly likely when 
high voltage gains are to be realized to achieve the type of impedance match 
required here. 

The choice of the preamp input device is intimately connected with the 
overall system concept. In light of the previously stated preamp design goals 
we will  consider the properties of the various input devices. The MOS-FET 
(Metal On Semiconductor Field Effect Transistor) is currently not a strong 
contender because of its high noise characteristics. The junction FET has the 
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advantages of very low noise. It will operate at low temperatures and in fact 
its performance peaks around 77OK. It has a simpler manufacturing process 
than bipolar transistors. The disadvantages of the J -FET are that it must 
operate at a high input impedance to realize the full benefit of its low noise ~ 

characteristics. It dissipates a large amount of power, and in  fact, the higher 
performance devices may be distinguished in general, by the higher currents 
drawn at zero gate to source voltage. Hence, a number of the devices would 
substantially increase the heat load of the a r ray  cooling mechanism. Finally, 
J-FET's are 3 to 5 t imes the s ize  of comparable bipolar transistors. 

The contrasting views for bipolar transistors offer the following advantages. 
The bipolar transistors are at a more advanced level of technology particularly 
in integrated arrays.  They occupy 1/3 to 1/5 the area of J-FETS. They can 
have a low noise at some impedance level, and this usually matches the detector 
impedance reasonably well. Bipolar transistors can operate with 1/10 to 
1/100 of the current at which a J -FET operates and has a corresponding lower 
power dissipation. On the disadvantage side, bipolar transistors can not 
operate at low temperatures. The useful p of these devices are usually 
specified by manufacturers only as low as -55OC. Thus their use would re- 
quire construction of a thermal drop from the preamp to the detector array. 
However, the differences in physical sizes wil l  dictate such a structure any 
way. 
transistor also requires a more involved structure than J-FET's to achieve 
isolation in the monolithic form. 

Thus, this is not a serious immediate consideration. The bipolar 

The detector array diodes require the high impedance input of the FET 
and ac coupled stage, implemented on a separate circuit board near the 
detector array. The high impedance circuits are very susceptible to stray 
electrostatic pickup; thus, it is imperative to minimize the interconnecting 
lead between the FET and the detector diode, The minimum length is essentially 
limited by a combination of the fan-out and connector configuration. The circuit 
diagram of this intermediate circuit board is shown in Figure 50. Each 
circuit consists of a source follower FET circuit with a direct-coupled input 
and an ac coupled output. The input impedance wi l l  be very high (10852). The 
output impedance will  approximate I/gm, for the FET, or in the neighbor- 
hood of 1 kilohm. Thus, pickup in the output leads wil l  be negligible. The 
double resistor output network is necessary to maintain the input bias con- 
dition for the present circuit boards. Also, the inherent feedback of the 
source follower circuit will give a uniform gain characteristic for all these 
(= 1). 

The modifications to the amplifier/scan circuit boards built under the 
previous contract are shown in Figure 51; note the ac feedback network of thg 
2.2 pfd capacitor and the 5K resistor. The bias of the NPN transistor pair 
has been reduced to get better control of the steady-state charging current 
of the charge storage capacitor (the 10 megohm and the 2.4 megohm resistors). 
Because of the tolerance of the charge storage capacitor (50 vpf) (5%), the 
steady-state output will still vary 5%. 
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Figure 51. Modified Feedback Network on Present Amplifier 
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Because of the problems of the minimum component circuit described, the 
design was reconsidered in light of commercially available amplifier devices. 

Some tests were made with silicon monolithic operational amplifiers. Of 
the best available today, several  features are not adequate for direct use. 
From Figure 52, it is apparent that a considerable number of external coni- 
ponents are required to implemnt  a detector preamplifier system using these 
units. First, the input impedance is too low and an external FET input circuit 
is required. The amplifier must contain some form of compensation (the 30 vpf 
capacitor) to make it stable. This compensation circuit can be used to further 
limit the band-pass if desired. The feedback network must provide for dc 
stability because of the high open-loop gains available (> 105). The output can 
swing into saturation, due to a small  temperature differential on the silicon 
chip. Finally, the output is low impedance and not directly compatible with 
the charge storage sampling scheme. 

On the positive side, several important features make the operational 
amplifiers attractive. First, they represent the first step toward niiniaturiza- 
tion of the amplifier. The required outboard components are available in 
hybrid form; in fact, several manufacturers specialize in hybrid assemblies 
consisting of FET input stages, compensation, and a monolithic operational 
amplifier chip. The use of an MOS-FET analog output offers some advantages 
in the power level at which sampling can take place. A s  an example, consider 
the signal power in a charge storage scheme, the values being determined by 
the components available. 

P = E X 1  
P = (1) x = watts 

Now, consider the signal power in a low-level MOS sampling scheme. 

-2 

The charge storage scheme has been operated near this power level with 
silicon photodiodes; however, this type of operation is not possible with a 
transistor amplifier (FET or bipolar) because the leakage currents are too 
high and the transfer gains too low for operation in this range. Thus, there ” 
appears to be a lower amount of preamplifier gain required in the MOS sampling 
system. This would be manifested as more negative feedback to provide tighter 
gain control (uniformity) in the preamplifiers. This is another advantage of 
the operational amplifier over the discrete amplifiers available; the operational 
amplifiers have more  stages and, hence, higher open-loop gain permitting 
tighter gain control thah the other amplifiers. Although the present trade-offs ’ 

are about a “draw, ” it ‘is anticipated that monolithic amplifier structures will 
be readily available in Ithe near future to perform the preamplifier functions. 
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V, ASSEMBLED MODEL 

The scanned detector system assembled- during this phase of the contract 
consists of the basic: assembly described in the Phase I1 Technical Report, 
plus the modifications incorporated into the design during Phase III. The com- 
plete assembly is shown in Figure 53. In particular, modifications were made 
to the optics, dewar, and preamps. 

A. DETECTOR PACKAGING 

The scanned detector assembly is designed about the molded plastic block 
containing the diode array.  This block functions a s  an integral part of the 
demountable vacuum system in which the array is enclosed. The block, shown 
in Figure 54, consists of the main body, which incorporates the vacuum feed- 
through connections and the detector mounting board that contains the array, a 
fanout lead pattern, and a "cold finger" for connection to the cooling system. 
Electrical connections from the a r ray  to the fanout pattern a r e  shown in Figure 
55. The two components in  Figure 54 a r e  mated together such that the fanout 
lead pattern matches the vacuum feedthrough pattern, and the cold finger ex- 
tends through the back surface of the block. The assemblies a r e  then bonded 
to be vacuum tight. 
x 5/8" thick. 

The overall dimensions of the block a r e  2 . 5 "  X 3 . 5 "  

B. COOLING 

The InAs array operates a t  any temperature from 3000K down, with an 
increase in  sensitivity a s  the detector is cooled. The model assembled for 
this program consists of a simple foaminsulated container that makes thermal 
contact with the "cold finger" from the a r ray  package. When filled with liquid 
nitrogen, the array is cooled to a temperature of -125OC. Lower temperature 
could be achieved by enlarging the thermal contact a rea  between the cold 
finger and dewar. 

The dewar and attached array block is shown in Figure 56. The dewar 
has a volume of 11 cubic inches and maintains the a r ray  below -1OOOC for 15 
minutes after filling. 

C. OPTICS 

The optical train was designed to operate with an optical chopper a s  an 
integral element. To minimize the required clnpper opening, the chopper is 
placed at  the image plane of the objective lens. A relay lens is then used to 
image the chopped scene onto the detector array.  

The lenses used a r e  made from Type 125 quartz, having an average trans- 
mission greater than 90% over the spectral band 0 . 2 6  to 3 . 3  p. The index 
of refraction varies uniformly in the spectrum of interest from 1 . 4 0  at 3 . 6  p 
to 1 . 4 5  at  1 . 0 ~ .  The objective lens is f/5 1" diameter and the relay lens is f / l  
1" diameter. 

82 



Figure 53. IR Detector System 

Figure 54. Mounting Assembly 
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Figure 55. Electrical Connection from 
Array to Fanout Pattern 

Figure 56. View of Array Block and Driver 
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The assembly is shown in Figure 57. The fixture mounted to the plastic 
block forms a vacuum chamber to prevent frost  formation on the detector chip, 
A silicone rubber O-ring seals  the fixture to the plastic surface, while the 
relay lens forms the second seal to the vacuum chamber. The field lens is a t  
the opposite end of the focus tube and is adjustable tofocus on sources from 1 2  
inches to infinity. 

The chopper is a driven tuning fork assembly mounted in a housing along 
the focus tube. 
slit of 0.04 inch. 
the slit is 0.019", a near-symmetrical modulation is achieved. The chopper 
operates a t  800 cps. 

The chopper blades a r e  0.95" long and open to a maximum 
Since the detectors a r e  completely illuminated a s  soon a s  

D. PRE-AMP PACKAGING 

As described in Section IV, the preamplifier circuits were modified to 
include AC feedback and an FET input. The AC feedback was easily incorpor- 
ated onto the same plug-in boards, shown in Figure 57 to the r ea r  of the dewar. 
The FET input, however, should optionally be placed a s  close to the detector 
element a s  possible, so a s  to minimize pickup. 

The most convenient location for the FET circuit is immediately after the 
printed circuit board feedthrough on the molded block. The FET, along with 
bias res is tors  and coupling capacitors, a r e  assembled onto a small printed 
circuit that plugs into the array module block. The output of this circuit 
is of relatively low impedance and can thus be directly wired, via cable, to the 
preamp cards. 

The logic and control circuitry to  drive the chopper and sequence the 
amplifier outputs remain unchanged from the previous program. It is housed 
in the auxiliary control box shown in Figure 53. 

E. TEST TARGET 

To demonstrate the capability of the array in  imaging sensing applications, 
a test target and image scanning device was assembled. 

The test target consisted of a uniformly heated gray surface. Output of 
the surface is calibrated with a point detector and compared with a blackbody 
at equal temperature. Pattern generation is achieved by placing a patterned 
aperture plate a short distance in front of the surface, creating a non-gray- 
scale image. Black and white levels a r e  controlled by the temperature of the 
source and the aperture plate. 

Scanning of the target is accomplished with a rotating mi r ro r  assembly, 
shown in Figure 53. The mi r ro r  rotates at a speed that enables the elec- 
tronically scanned horizontal line to be traced out several times a s  the vertical 
position moves through one resolution line. 
coupled into drive circuitry such that the output signals driving the display 
scope trace a frame in synchronism with the mirror .  

The scanner is electrically 
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Figure 57. Lens Assembly Attached to Array. 
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V. RECOMMENDATIONS 

The intent of this program was two-fold: (1) to determine the ability to 
fabricate high-sensitivity InAs photodetectors in  a monolithic form,and (2) 
determine the potential of achieving uniform ar rays  of these high-sensitivity 
elements. The results achieved during the program indicate that the work 
should be continued to the next stage of development, namely a manufacturing 
methods program whereby the laboratory techniques established by this pro- 
gram are transferred into a pilot line process. 

The purpose of such a program would be to provide that type of process 
control which can be arrived at only by processing relatively large numbers 
of wafers with a totally constant environment. 
data on wafer yield and array costs can be accurately determined. 

From such efforts,specific 

The study carried out on PbSnTe during the past two years indicates that 
the initial selection of this long-wavelength detector material was correct. 
Continuing advances in the material properties and the device properties have 
advanced this detector to the stage where an a r ray  development program can 
be reasonably initiated. Coupled with continuing programs for material and 
device optimization, electronically scanned linear arrays could be demonstrated 
in the very near future. 
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